Refine Your Search

Topic

Author

Search Results

Technical Paper

Design and Evaluation of an in-Plane Shear Test for Fracture Characterization of High Ductility Metals

2024-04-09
2024-01-2858
Fracture characterization of automotive metals under simple shear deformation is critical for the calibration of advanced fracture models employed in forming and crash simulations. In-plane shear fracture tests of high ductility materials have proved challenging since the sample edge fails first in uniaxial tension before the fracture limit in shear is reached at the center of the gage region. Although through-thickness machining is undesirable, it appears required to promote higher strains within the shear zone. The present study seeks to adapt existing in-plane shear geometries, which have otherwise been successful for many automotive materials, to have a local shear zone with a reduced thickness. It is demonstrated that a novel shear zone with a pocket resembling a “peanut” can promote shear fracture within the shear zone while reducing the risk for edge fracture. An emphasis was placed upon machinability and surface quality for the design of the pocket in the shear zone.
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
Technical Paper

Fatigue Behavior of Stamped Electrical Steel Sheet at Room and Elevated Temperatures

2023-04-11
2023-01-0804
Electrical steels are silicon alloyed steels that possess great magnetic properties, making them the ideal material choice for the stator and rotor cores of electric motors. They are typically comprised of laminated stacks of thin electrical steel sheets. An electric motor can reach high temperatures under a heavy load, and it is important to understand the combined effect of temperature and load on the electrical steel’s performance to ensure the long life and safety of electric vehicles. This study investigated the fatigue strength and failure behavior of a 0.27mm thick electrical steel sheet, where the samples were prepared by a stamping process. Stress-control fatigue tests were performed at both room temperature and 150°C. The S-N curve indicated a decrease in the fatigue strength of the samples at the elevated temperature compared to the room temperature by 15-25 MPa in the LCF and HCF regimes, respectively.
X